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Abstract

Purpose We aim to develop quantitative performance metrics and a deep learning model to objectively assess surgery skills
between the novice and the expert surgeons for arthroscopic rotator cuff surgery. These proposed metrics can be used to give
the surgeon an objective and a quantitative self-assessment platform.

Methods Ten shoulder arthroscopic rotator cuff surgeries were performed by two novices, and fourteen were performed by
two expert surgeons. These surgeries were statistically analyzed. Two existing evaluation systems: Basic Arthroscopic Knee
Skill Scoring System (BAKSSS) and the Arthroscopic Surgical Skill Evaluation Tool (ASSET), were used to validate our
proposed metrics. In addition, a deep learning-based model called Automated Arthroscopic Video Evaluation Tool (AAVET)
was developed toward automating quantitative assessments.

Results The results revealed that novice surgeons used surgical tools approximately 10% less effectively and identified and
stopped bleeding less swiftly. Our results showed a notable difference in the performance score between the experts and
novices, and our metrics successfully identified these at the task level. Moreover, the F1-scores of each class are found as
78%, 87%, and 77% for classifying cases with no-tool, electrocautery, and shaver tool, respectively.

Conclusion We have constructed quantitative metrics that identified differences in the performances of expert and novice
surgeons. Our ultimate goal is to validate metrics further and incorporate these into our virtual rotator cuff surgery simulator
(ViRCAST), which has been under development. The initial results from AAVET show that the capability of the toolbox can
be extended to create a fully automated performance evaluation platform.
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Introduction diagnose, and repair the injuries inside a joint. Arthroscopic
Rotator Cuff (ARC) is a surgical treatment for muscles and

Arthroscopy is a minimally invasive surgical procedure per-  tendons that connect the upper arm to the shoulder blade.
formed via small incisions in the patient’s skin to examine, Surgeons insert pencil-sized instruments with a small lens
and lighting into the joint and see the anatomy on a 2D

50 Doga Demirel monitor screen streamed from an arthroscope, a small rigid
ddemirel @floridapoly.edu fiber optic camera with a light source. The goal of the

anchor placement is to increase strength for tensile stress.
The surgeon uses multiple anchors evenly distributed over
the humeral head area to divide the load equally and then
sutures the torn rotator cuff with threads attached to the
anchor. One of the fundamental skills that a surgeon needs
to master for the arthroscopic rotator cuff treatment includes
arthroscopic navigation and anatomical landmark detection,
bursectomy, bone drilling, anchor placement, suture-to-bone
fixation, suture-to-tendon fixation, abrasion resistance of
suture, suture strength, knot tying, and knot security tasks
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to name a few. Based on the tear and its location above-
mentioned tasks can be performed multiple times, such as
suturing happening three times for a triple-loaded suture
anchor. If there need to be multiple anchor placements, these
tasks may be repeated multiple times.

Arthroscopic rotator cuff repair has seen a notable increase
in the frequency of procedures performed per year. From
2007 to 2015, rotator cuff repair surgeries have increased
by 188% [1]. While there has been a drastic increase in the
volume of surgeries, surgery training remains lacking and
is based on traditional methods. Traditional training meth-
ods for residents and surgeons include cadavers, mannequins,
and the apprenticeship model, which are limited in their cost,
realism, and associated with high-risk factors (e.g., practic-
ing on actual patients) [2-5]. The problem becomes more
acute considering working hour restrictions which lead to
the acquisition of proficient skills in shorter than necessary
time [6]. We envision that virtual reality (VR) based simula-
tion training can provide a valuable aid to traditional methods
in training arthroscopic surgeries.

We have been developing a VR simulator to diagnose
and repair rotator cuff tears called Virtual Rotator Cuff
Arthroscopic Skill Trainer (ViRCAST). Our long-term aim
is to provide a high fidelity, low-cost arthroscopic training
platform to enhance surgery training and assessment with
authentic performance measurements. We envision that sur-
geons’ training and skill level at any level of experience can
be quantified. However, current assessments of surgeons in
arthroscopy training are very subjective and primarily based
on the opinion of the supervising surgeon. The performance
feedback might not stem from evaluating essential procedu-
ral cognitive or psychomotor skills.

On the other hand, VR simulators can provide unbi-
ased and detailed procedural feedback and categorize the
surgeon’s skill level. However, this objective measurement
requires the development and validation of metrics that
directly map to the surgeon’s performance in the operat-
ing room [7-10]. The metrics need to be well defined and
objective to capture details of all the tasks (e.g., including
discretionary or cognitive tasks) specific to the procedure.
The existing metrics in the literature are either general and
very subjective [11, 12] or not validated with actual operating
room performance [13].

The processes or tasks by which experts outperform
novices have been studied in various contexts such as chess
matches, solving physics problems, or nursing [14]. Experts
tend to make cognitive decisions and perform tasks rapidly
without thinking as much before performing an action. This
decision process in novices, due to a lack of experience and
repetition, can result in slow cognition and misjudgment [14].

In our prior study [15], the performance of expert sur-
geons in a variety of complex cases of arthroscopic rotator
cuff surgery is measured. This study aims to validate our
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proposed arthroscopy metrics [15] that aim to distinguish
surgery performances based on quantitative measurements.
Thus, we hypothesize that the proposed metrics could objec-
tively assess the surgery skills between the novice and the
expert surgeons. In this study, we have compared the perfor-
mance of a group of novice surgeons with expert surgeons
to validate the hypothesis further. Moreover, we created a
preliminary deep learning-based model to automate the quan-
tification and assessment of the surgeons based on their
surgery performances.

Methods

We have analyzed surgeons’ performances from arthroscopic
view recordings of rotator cuff surgeries to develop and val-
idate our metrics. We first mapped segments of the videos
to the tasks performed and measured the total time spent on
each of these tasks. For instance, knot tying was mapped to
the average of each knot tie time and knot cut time, while bur-
sectomy was mapped to the pre-clean time. In some tasks,
the completion time of a task can indicate the surgeon’s expe-
rience level. The ideal outcome of a task (e.g., without any
errors) can be measured with checklist items associated with
numerical scores. The final performance score is computed
as the average score out of the list of all these measures,
which indicates the skill levels (e.g., skills in arthroscope
manipulation) and quality of the overall procedure.

The metrics were primarily developed for arthroscopic
rotator cuff repair surgery tasks. To validate our metrics,
we merged the previously proposed metrics in the litera-
ture, Arthroscopic Surgical Skill Evaluation Tool (ASSET)
[11] and Basic Arthroscopic Knee Skill Scoring System
(BAKSSS) [12], mapped our objective metrics to the merged
metrics and compared the summary of skill outcomes.

Subjects

We analyzed 24 arthroscopy rotator cuff videos from two
novices and two experts. The videos were recorded from
an arthroscopic surgery view. Ten of these videos were per-
formed by the novices, each novice surgeon performing five
surgeries. Novice surgeons are defined as surgeons with
extensive residency training, while expert surgeons are those
who have undergone fellowship programs for rotator cuff
repair procedures. We conducted questionnaires about the
surgeons to identify and quantify their skill levels. The num-
ber of surgeries they had completed, the number of rotator
cuff surgeries they had seen in the last six months (e.g.,
mostly applicable for novice surgeons), and the frequency
(e.g., number of surgeries per month) they have performed,
etc. We also inquired about surgeons’ training in the ques-
tionnaire. The novice subjects in our study performed the
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surgery approximately fifty times, had seen the surgery per-
formed more than fifty-five times in the last six months, and
over a hundred times overall. Expert surgeons performed
the surgery more than two hundred times and observed the
surgery performed more than two hundred times in the last
six months.

Surgery questionnaire

We require surgeons to provide detailed information regard-
ing the surgeries used in our analysis. The questionnaire’s
content includes the type, location, and size of the rotator cuff
tear, the difficulties of the procedure, scar tissue and clean-
ing amount, and suture passing and tying. All video-recorded
surgeries were performed in the ‘beach chair’ position [16].
Recorded shoulder arthroscopy surgeries were common pro-
cedures with no unexpected complications such as a change
in blood pressure during surgery, infection, or dislocation. All
ten novice videos were crescent-shaped tears, while thirteen
of the expert videos were crescent-shaped, and one was an L-
shaped tear. The tear sizes ranged up to 3 cm. All tears were
located on supraspinatus, subscapularis, and/or infraspina-
tus. Even though the tear’s location, size, and shape play
a role in the difficulty of the surgery, the procedures were
randomized and not predetermined according to a surgeon’s
level of expertise.

Video timing analysis

Three raters performed surgery video analysis, and each
of them was blinded to the scores of the other raters. All
raters were given specific guidelines and instructions about
each performance metric to minimize the inter-rater incon-
sistencies and ambiguities due to misunderstanding. Upon
completing the rating, start and end timings, and scores of
each task for each video from the raters were collected for
further statistical analysis. An inter-rater reliability test was
performed to see the degree of agreement between the raters.

Metrics

In rotator cuff repair, the major phases of surgery are diag-
nostic, pre-cleaning (preparation of the joint and space,
debridement), anchoring (anchor placement), and suturing
(passage of the suture and knot tying). A complete task tree
and derivation of the phases can be seen in the hierarchical
task analysis work given in [15]. The metrics for a task also
include the exact definitions of every salient action’s start
and end times. It is essential to understand any actions per-
formed in the tasks in order and score them. For instance, the
suturing task starts when an additional portal is opened, and
the needle/tool is first seen in the surgery video.

Times | Systematized | Established
and ! Metric [~ Metric
Checklist

Fig. 1 Workflow illustrating the mapping of systematized metric to
established metric

The rater timings are used to compute indirect measures
(such as knot tying, anchoring, etc.) using our systematized
metrics (see Table 1). To validate the consistency of our
systematized metric results, we merged BAKSSS [12] and
ASSET [11] evaluation metrics and mapped our system-
atized metrics to these merged/established metrics, as seen in
Fig. 1. Results from each category of the established metric
are compared using our systematized metrics and an inspec-
tion checklist (see Table 2). In Tables 1 and 2, the maximum
score for each category is five points.

Systematized metric

We based systematized metrics on phase/task times, check-
list (e.g., a task performed or not), and our metrics [15].
The systematized metrics are derived to capture the overall
quality of the task, as seen in Table 1. The metrics are also
useful to capture the skill level. For instance, for the proper
position of the anchor, the angle (e.g., 45 degrees) and loca-
tion of the anchors (e.g., uniform distribution of the anchors)
are critical for achieving the best score. In the placement
of the anchor task, we also considered the time spent per
anchor. We hypothesized that the efficiency of the placement
of the suture anchor task also reflects the skill level for effi-
cient suture passing since sutures are fixed at the top of the
anchor. Therefore, these tasks are dependent on each other
and always conducted in the same order. Moreover, recall that
the same arthroscopic task may be repeated multiple times,
such as in the case of multiple anchor placements.

In Table 1, the time and efficiency splits were determined
by analyzing each expert surgeon’s videos. The expert sur-
geon’s time for placing the anchor, knot tying, and knot safety
(shorter tasks) was 30 s, while bursectomy (a more extended
task) was 60 s.

Mapping to the existing metrics

Each inspection checklist item (see the first row in Table 2)
is given one point. Due to having six inspection checklist
items, the average is computed and normalized to the maxi-
mum score of five, depending on the number of measures for
each task. Safety criteria correlates to a checklist of actions
that surgeons need to complete successfully. These are: stop-
ping or controlling bleeding within one minute, identifying
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Table 1 Formulas for each task score in our systematized metrics. Notice that time is in seconds and threshold values for timings are mapped
to Likert scale from 1 to 5 where 5 corresponds to expert performance while 1 corresponds to novice performance. These threshold values are
empirically determined by an expert arthroscopy surgeon

Identification of Suture Locations

Bursectomy (Preclean)

Placing of the Anchor

Efficient Suture Passing

Knot Tying

Preparation of the Footprint

Transition Speed

SUM (Bleeding not Stopped in 1 min, Identify Anchor Location with Needle, Ensure Anchor Drill

in Right Position, Clear View of Task Items, Checking Location of Sutures, Final Check of All
Sutures) where all items are O or 1

5, precleantime < 540

4, 540 < precleantime < 600

3, 600 < precleantime < 660

2, 660 < precleantime < 720

1, 720 < precleantime < 780

0

, otherwise

, anchortime < 120

, 120 < anchor time < 150

5
4
3, 150 < anchor time < 180
2, 180 < anchor time < 210
1, 210 < anchor time < 240
0

, otherwise

S, totaltaskefficiency > 0.9

4, 0.9 > totaltaskefficiency > 0.81
3, 0.81 > rotaltaskefficiency > 0.72
2, 0.72 > total task ef ficiency > 0.63
1, 0.63 > total task ef ficiency > 0.54
0, otherwise

Task time each iteration
ask time for all iterations’

where task efficiency = the splits were chosen according to expert

surgeon videos

5, AVERAGE((total knot tietime) + (total knot cut time) < 150

4, 150 < AVERAGE((total knot tietime) + (total knot cut time) < 180
3, 180 < AVERAGE(total knot tietime) + (total knot cut time) < 210
2, 210 < AVERAGE((total knot tietime) + (total knot cut time) < 240
1, 240 < AVERAGE((total knot tietime) + (total knot cut time) < 270

0, otherwise

, postcleantime < PFBT

PFBT < postcleantime < PFBT + PFBT
PFBT + PFBI < postcleantime < PFBT + PFBI %2
PFBT + PFBI %2 < postcleantime < PFBT + PFBI %3
, PFBT+ PFBI %3 < postcleantime < PFBT + PFBI x4

, otherwise

5
4
3
2
1
0

where PFBT = Preparation of the Footprint Base Time, and PFBI = Preparation of the Footprint
Base Interval

5, 0.15>TBTSS
4, 02>TBTSS
3, 0.25>TBTSS
2, 03>TBTSS
1, otherwise

where TBTSS = % Time Between Tasks in the Suturing Stage. Transition speed indicates the delay
between suturing tasks, the splits were chosen according to expert surgeon videos
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Table 1 (continued)

Safety

>

30seconds > TBNS
60seconds > TBNS
90 seconds > TBN S
120 seconds > TBN S

5
4
3
2
1
0

. otherwise

., 150seconds > TBNS

where TBNS = Time of Bleeding Not Stopped. Safety measure, indicates the aggregated total time
of the surgeon when no action is taken during bleeding

Table 2 Formulas for established metric. These categorizations in each
row and their evaluation formulas are designed and carefully evaluated
based on the guidance received from expert surgeons in arthroscopic
procedures

Inspection Checklist Inspect Superior Labrum and

Biceps: ISLB

Inspect Anterior Labrum and
Capsule: IALC

Inspect Rotator Cuff Muscles:
IRCM

Inspect Glenohumeral Ligament:
IGL

Inspect Rotator Interval: IRT

Inspect Glenoid and humeral head:
IG

AVERAGE (Bursectomy +
Preparation of the Footprint +
Efficient Suture Passing)

Knowledge of Instruments

Field of View (Identification of Suture Location +
AVERAGE (ISBL + IALC +

IRCM + IGL + IRI + IG) ¥5)/2

(Number of Portals + Identifying
Portals + AVERAGE (ISLB +
IALC + IRCM + IGL + IRI + IG)
*5 + Identification of Suture
Location)/4

AVERAGE (Bursectomy +
Preparation of the Footprint +
Position of Anchor + Knot Tying)

AVERAGE (Knot Tying + Efficient
Suture Passing + Identification of
Suture Location)

AVERAGE (Bursectomy +
Preparation of the Footprint +
Efficient Suture Passing + Knot
Tying)

AVERAGE (Transition Speed +
Knot Tying + Efficient Suture
Passing)

Camera Dexterity

Instrument Dexterity

Bi-Manual Dexterity

Efficiency

Flow of Procedure

anchor location with a needle, ensuring the anchor drill is in
the proper position, establishing a clear view with the arthro-
scope, checking the location of sutures (equidistance), and
verifying all sutures at the end. Field of view correlates to

the identification of suture locations and inspection checklist,
while camera dexterity associates with the number of portals,
inspection checklist, identifying portals, and suture locations.
Knowledge of instruments, instrument dexterity, bi-manual
dexterity, and efficiency correlate to tool efficiency. There-
fore, the tool efficiency is calculated by dividing the tool’s
active time (a tool may be idle sometimes) inside the shoul-
der by the total time the tool appears in the scene. Another
factor affecting bi-manual dexterity is the knot tying time
and knot quality/safety. The flow of procedure correlates to
the transition speed, knot tying, and efficient suture pass-
ing. Quality of procedure is the optimal final product with
no flaws, and autonomy is the successful completion of the
procedure without any assistance.

Automation of surgery quality metrics:
a case study

Along with the proposed Systematized metric for evaluating
the quality of surgery, this study also explores the possibility
of using deep learning to create an automated arthroscopic
video evaluation tool (AAVET). Manual assessment using
the proposed metrics is a labor-intensive and time-consuming
process. Therefore, automating the quantitative assessments
is crucial for scaling the process of surgical evaluation. Sev-
eral of the metrics within the proposed system are related
to the amount of time required to complete a surgical task,
with each task being associated with a set of tools. Proper
autonomous evaluation of surgery necessitates some form
of tool classification (as seen in Fig. 2) and scene detection
from surgery videos to determine what task is being per-
formed. Figure 2 shows the presence of the shaver tool and
the electrocautery tool in two different scenes.

This study builds the foundations of an automated assess-
ment framework by performing automatic tool classification
using a subset of the surgical tools used in arthroscopic
surgery. The widely used electrocautery and shaver tools
were selected for initial classification studies, with more to
be added in future. Deep learning has been shown to excel at
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Fig. 2 a Shaver tool and b Electrocautery tool from the surgery videos
to automate tool detection. AAVET automatically detects and identifies
surgical instruments present in the scene. AAVET also keeps track of
entrance and exit times of the instrument

complex object detection and classification tasks, and it has
been used successfully in the classification of electrocautery
and shaver tools [17], making it a natural fit for this study.

In our previous study [17], deep learning was used to
identify the electrocautery and shaver tools in the context of
individual surgical images. However, this study introduces
a new deep learning model to automatically classify and
subsequently determine the amount of time that the elec-
trocautery and shaver tools appeared in the scene throughout
the surgery with the goal of automating the assessment pro-
cess in future. The automation of the assessment process will
allow for objective and quantitative self-assessment. Train-
ing and self-assessment are expected to decrease the learning
[18].

Deep learning data acquisition

Deep learning data was acquired by editing the videos used
for surgery video analysis into one-second clips. First, the
videos were processed to create a dataset of video clips of
the shaver and electrocautery tools in the scene and clips
in which no tools are present. The training dataset contained
3,086 one-second clips, with 1,936 clips of the electrocautery
tool and 815 clips of the shaver tool, and 335 with no tools
from 16 videos. A small validation dataset was created con-
taining 36 video clips; 15 electrocautery tool, 11 shaver tool,
and ten no tools. This set was used to check for the deep
learning model’s overfitting (high bias) or underfitting (high
error rate). A separate test dataset of 7 videos ranging from
30 s to a few minutes was used to test the model’s accuracy
in a real-world scenario.

Deep learning model

For this project, we used a 3D Convolutional Neural Network
(3DCNN) [19] to classify one-second clips as either con-
taining no tools, the electrocautery tool, or the shaver tool.
The model consists of three convolutional blocks followed
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by fully connected layers. 3DCNN architecture used for the
model is illustrated in Fig. 3. For the activation function, Rec-
tified Linear Unit (ReLU) [20] is used in hidden layers except
for the output layer. The output layer uses Softmax [21] for
binary classification with two output nodes where one node
detects the existence/nonexistence of electrocautery and the
other node detects the existence/nonexistence of the shaver
tool. In this study, we used Adam [22] as the optimizer with
sparse categorical cross-entropy [23] as the error/loss func-
tion to optimize the deep learning model’s training process.
Adam was used due to its performance over other optimiz-
ers [22]. Dropout was applied after each convolutional block
and between the second and last fully connected layers to
ensure that the neural network learns a more robust set of
features that perform equally well with random subsets of
the nodes selected. L2 regularization was applied to every
convolutional and fully connected layer to combat overfitting
by penalizing the weights that become too large for some set
of features (see Fig. 3 for a diagram of the model).

Deep learning training

The 3DCNN was trained on a virtual machine at Google
cloud. The virtual machine used an nl-standard-16 machine
type, which includes 16 virtual CPUs and 60 GB of RAM.
The virtual machine was also configured to use an NVIDIA
TESLA P100 GPU and a 150 GB SSD. The operating sys-
tem used by the virtual machine was Ubuntu 18.04 LTS. As
mentioned in “Deep learning data acquisition” section, 3086
one-second clips were used as the training dataset. The model
discussed in this study is a preliminary model trained for 150
epochs, with a single batch with the size of the full training
dataset. All images were resized to 128 x 128x3. During the
training process, a learning rate of 0.001 was used.

Results
Systematized metrics results

In every systematized metric category, expert surgeons
scored better than novice surgeons, except for the position
of the suture anchor, where both groups performed the same
score. Table 3 shows the average systematized metric results
for both expert and novice surgeons for the suturing task. Fig-
ures 4 and 5 show the box plots of each suturing task in our
systematized metric. These graphs demonstrate the variation
among novice surgeons.

Identification of suture locations

An essential checklist item in our metrics is identifying the
anchor location with a needle before deploying the anchor.
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Fig.3 Diagram of the 3D Convolution Neural Network architecture used in AAVET. The model consists of three convolutional blocks followed by

fully connected layers

Table 3 Systematized metric results for each suturing task. For each task
given in the first column of the table average expert and novice scores
are presented. Scores are calculated using our systematized metric.
Different columns indicate percentile difference between the average
scores of experts against novices. For instance, for there is no differ-
ence observed between experts and novices for positioning anchors after
suture anchors’ locations are marked with a needle

Suturing task Expert Novice Difference
average average (%)
(points) (points)
Identification of 4.64 35 22.8
Suture Anchor
Locations
Position of Anchor 5 5 0
Placing of the 4.57 3.1 29.4
Anchor
Efficient Suture 4.36 2.3 41.6
Passing
Knot Tying 4.29 3 25.8
Preparation of the 5 4.9 2
Footprint
Transition Speed 3.72 2.9 36.4
Safety 4.5 2.6 38.0

The expert surgeons were found to always complete this task;
however, novice surgeons only completed the task in 40%
of the novice videos. Also, we noticed that the expert sur-
geons clearly inspected all sutures before placing the next
one. In two novice videos, the final check of all sutures and
clear view of task items were not completed, which caused a
22.8% lower score. In all expert videos, bleeding was spotted

Points

Transition Speed Safety

Tasks

Knot Tying

Fig. 4 Distribution of Novice performance results for Knot Tying, Tran-
sition Speed and Safety metrics. The highest possible score is 5

and stopped within 60 s, which is the case only in 40% of
the novice videos. The ability to establish a clear view of the
tasks in the procedure was also determined in the checklist.
In expert cases, the view was clearly visible during the entire
surgery in each video, while the clear visibility was decreased
to only 3 cases out of 10 novice videos. During the bleed-
ing, novice surgeons proceeded at a slower pace to stop the
bleeding, and in three of the videos, the novices scored zero
points due to overlong bleeding.

@ Springer



International Journal of Computer Assisted Radiology and Surgery

Fig.5 Distribution of Novice T
performance results for
Preparation of the Footprint,
Placing of the Anchor,
Identification of Suture Locations
and Efficient Suture Passing 4r +
metrics. The highest possible
score is 5

Points

1

|
|
—1 4

1 i 1

Preparation of Footprint

Placing the anchor and knot-tying

In two of the novice videos, the anchoring task took more
than four minutes due to the excessive time spent during the
identification of a location and inserting the anchor in the
humerus, which, as a result, caused a 29.4% lower score for
novices than experts.

In the knot-tying task, we determined the type of the knot
(e.g., square knot) and the knot tying time. All knots by
novice surgeons were square knots, but in four novice videos,
knot tying times were longer due to the knots being tied out
of order.

Transition speed

Five of the novice videos received a score of one point in tran-
sition speed criteria, which suggests that additional suturing
training might be necessary for novice surgeons. The effect
of this training can be noticeable and reduce the transition
time between sutures during the suturing task.

Established metrics results

In every established metric category, expert surgeons scored
better than or the same as novice surgeons. Autonomy is
the only category in which both groups performed the same
score. Our results demonstrated that all the indirectly com-
puted measures (systematized metrics) for novice and expert
surgeons have notable differences. Table 4 shows the average
established metric results both for expert and novice sur-
geons. The variation in the metric category (as seen in Figs. 6
and 7) was notably more significant for novice surgeons (min
2.93, max: 5) than comparing to expert surgeons (min 4.27,
max: 5).

@ Springer

Placing of the Anchor Identification of Suture Locations Efficient Suture Passing
Tasks

Table 4 Established metric result comparison for expert and novice sur-
geons. The first column lists the skills to be assessed based on the
established metric

Established Expert Novice Difference
metric category average average (%)
(points) (points)

Safety 5 3.7 26.0

Knowledge of 5 4.2 16
instruments

Field of View 5 4.25 15

Camera Dexterity 5 4.625 7.50

Instrument 4.62 4.5 24
Dexterity

Bi-Manual 4.5 2.93 314
Dexterity

Efficiency 4.44 3.96 9.6

Flow of 4.27 2.73 30.8
Procedure

Knowledge of 5 4 20
Specific
Procedure

Quality of 5 4.2 16
Procedure

Autonomy 5 5 0

Safety

In the safety analysis for established metrics, two videos from
novice surgeons received a score of two. In all these cases,
the final verification of all sutures, clear view during the sev-
eral tasks such as suturing and anchoring, and identification
of anchor location with a needle were not performed, which
caused a 26% lower score. On one occasion, in one of the
lower-rated safety criteria videos, during the post-cleaning
phase, the sutures were accidentally burned with the electro-
cautery tool.
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Efficiency had a 9.6% average score difference between the
expert and novice scores. While all expert efficiency grades
were consistent, out of ten novice videos, three had a task
efficiency of less than 54%, which was the main contributing
factor for overall lower novice scores.

We also calculated the tool efficiency of shaver and
electrocautery tools for expert and novice surgeons in the
cleaning phases, as shown in Fig. 8. The results showed
that the average expert tool efficiency for shaver and elec-
trocautery was 86.25% and 87.95%, respectively, while the
average novice tool efficiency for shaver and electrocautery
was 77.47% and 78.86%, respectively.

Bi-manual dexterity had the most significant differentiation
in novice and expert scores with 31.4%. This was caused
by the substantial difference between experts and novices
in knot tying (difference: 25.8%), efficient suture passing
(difference: 41.6%), and identification of suture location (dif-
ference: 22.8%).

AAVET results
The confusion matrix of AAVET is presented in Fig. 9.

This figure shows that most of the no-tool test videos were
predicted correctly (precision = 0.91%). Conversely, 108
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Fig. 8 Tool Efficiency
comparison for expert and novice
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Fig.9 Confusion Matrix of the AAVET showing the predicted and
actual values of no tools, shaver tool, and electrocautery

electrocautery or shaver tools were predicted as no tool (sen-
sitivity = 0.69%). The highest specificity and accuracy are
found to be for the no-tool classification, which was 99%
and 95%, respectively. Moreover, the precision of predicting
the shaver tool was 80%. The rest, 20%, was incorrectly pre-
dicted as the shaver tool (sensitivity = 75%). Similar to no
tool classification, the shaver tool had high specificity (92%)
and accuracy (87%) results. The highest sensitivity (0.91%)
is found for the electrocautery tool. It shows that 91% of
electrocautery tool predictions were classified correctly over
all samples that are predicted as electrocautery tool. The
electrocautery tool had the lowest specificity (76%) and accu-
racy (85%) results, while the precision of the electrocautery
tool was 83%. Accuracy, precision, F1-score, sensitivity, and
specificity for each class are given in Table 5.

Shaver

Tool Efficiency

Electrocautery
mExpert m Novice

Discussion

Our hypothesis was that we could objectively assess arthro-
scopic surgery skills between the novice and the expert
surgeons with minimal human input. To validate our hypoth-
esis, we merged ASSET and BAKSS evaluation metrics and
mapped our objective metrics to the merged metric. We fur-
ther validated our metrics by comparing the performance of a
group of novice surgeons against expert surgeons. Since our
end goal is to automate the quantification and assessment of
the surgeons based on their surgery performances, we also
attempted to create a preliminary deep learning-based model
for detecting the presence or absence of the surgical instru-
ments along with the accurate classification of the tool.

Systematized metrics

To the best of our knowledge, there aren’t any perfor-
mance metrics for arthroscopic surgeries that can objectively
assess surgeon performance with minimal human input. As
mentioned in [24], only using checklists doesn’t improve
assessment validity over global rating scales such as BAKSS,
but they obtain other information. Thus, we utilized checklist
items and time data to derive our own systematized metrics.
Our systematized metric was able to differentiate between
expert and novice performances. The metrics showed that
novice surgeons have the most challenging time with the

Table 5 Performance evaluation

of the automated arthroscopic Accuracy (%)  Precision (%)  Sensitivity (%)  Specificity (%)  Fl-score
video evaluation tool (AAVET) (%)
No Tools 0.95 0.91 0.69 0.99 0.78
Shaver Tool 0.87 0.80 0.75 0.92 0.77
Electrocautery 0.85 0.83 0.91 0.76 0.87

Tool
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suture passing task, as the point difference between expert
and novice average scores was 41.6%. The other two tasks
where novice surgeons had the largest performance per-
centage difference were safety (38%) and transition speed
(36.4%). Novices performed the same as experts in the posi-
tioning of the anchor task. Also, novices performed almost
as well as experts in the preparation of the footprint task with
only a difference of 2%. These results show that novices had
the correct theoretical knowledge (anchor position and foot-
print preparation) while missing practical knowledge (suture
passing, transition speed, and safety).

Established metrics

In the established metrics, the average expert performance for
all metric categories was over 4.27 points. While for novices,
the average performance score for the metric categories var-
ied from 5 to 2.73. For seven metric categories, average
expert performance was five, for novices, this number was
only one which was autonomy. The two most significant
differences between expert and novice performance were
bi-manual dexterity (difference of 31.4%) and flow of the
procedure (difference of 30.8%). These results were expected
as bi-manual dexterity has been shown to be higher in experts
than novices [25, 26]. Autonomy was given as 5 to everyone
as all procedures were completed.

AAVET

Minimally invasive surgeries such as laparoscopy and
arthroscopy help patients to recover faster and reduce blood
loss. However, the lack of direct visual contact and limited
real-time feedback are disadvantages of the procedure for the
surgeons [27]. Computer vision methods have been used to

EC — Electrocautery Tools ST — Shaver Tools

overcome these limitations, but most studies have been for
laparoscopy instead of arthroscopy [28-30]. This is due to the
small field of view in the joint space and the debris obstruct-
ing the field of view [27]. To the best of our knowledge, this
is the first study that predicts the tools used in arthroscopy
surgery in real-time.

The end goal of automating the objective assessment met-
rics proposed in this study was limited by several factors
while pointing to promising future advancements. When
evaluating the predictive deep learning model, it became
apparent that specific sets of circumstances within a video
clip led to lower model performance. For instance, when a
tool in the frame is heavily occluded or mostly out-of-frame,
the model’s accuracy decreases because the defining features
of the tools are not visible. As seen in Fig. 10, the electro-
cautery tool can be predicted as no tool due to the tool not
being fully present in the scene. In Fig. 11, only the back-
side of the electrocautery was present in the scene, which
caused AAVET to predict it as the shaver tool. This was due
to the similar nature of the backside of both tools. A possi-
ble future solution to this problem is developing an algorithm
that analyzes the confidence level of the model’s prediction to
determine if the context of surrounding time intervals in the
video should be used to make a decision (rather than a deci-
sion based solely on the current time interval). For example,
if only a portion of a tool is in view within a given inter-
val (leading to a low confidence value), the algorithm would
adjust past predictions if, in a subsequent interval, a defining
feature becomes visible (leading to a high confidence value).
This algorithm will also need to determine if the tool has left
the frame entirely (this is possible using the model’s abil-
ity to predict that no tool is present) and for how long to
ensure that the tool in use has not changed. Another limiting
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factor in the automation case study was training data. Man-
ually defining the ground truth for the amount of time that a
tool is present in a video is laborious and limits the size of
the dataset. Increasing the dataset size could lead to better
results.

Additionally, we plan to expand the set of tools in future
studies. Expanding the set of tools would automatically
determine which part of the surgery is being performed. Com-
bining the ability to identify more tools and an algorithm for
determining what portion of the surgery is being performed
would allow for initial studies on complete automation of
evaluation using a subset of the proposed surgical quality
metrics.

Video analysis

The limitation of the study is that we analyzed a total of
24 videos from two novices and two experts. The level of
expertise varies among novice and expert surgeons. For this
reason, we still need to validate the scoring metrics further
and tune the automated tool detection with a more extensive
study that involves more surgeons and surgeries.

Conclusion

In conclusion, we are currently developing a virtual simulator
for arthroscopic rotator cuff procedures. The virtual simula-
tor can train surgeons to perform arthroscopy and improve
their surgical skills without any significant risk to the patient.
The training module requires a scoring metric to give con-
stant feedback to the operator. In this study, we performed
a preliminary construct validation study for the proposed
scoring metrics for shoulder arthroscopy and arthroscopic
rotator cuff repair surgery. This metric can be used to give
quantitative feedback to trainees. Due to our metrics being
specific to arthroscopic rotator cuff repair surgery, it can also
be incorporated as a performance evaluation to any VR-based
arthroscopic rotator cuff repair surgery simulators.
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